Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Quan-Zheng Zhang and Can-Zhong Lu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China

Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
$w R$ factor $=0.133$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquatetrakis($\mathbf{1 H}$-imidazole- $\kappa \mathrm{N}^{\mathbf{3}}$)cobalt(II) terephthalate

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$, the octahedrally coordinated Co atom lies on a center of symmetry and is bonded by four imidazole and two water molecules. The terephthalate anion also lies on a center of symmetry but does not coordinate to the Co atom. Hydrogen bonding leads to a three-dimensional structure.

Comment

As a multidentate bridging ligand, terephthalate (tpt) has been used in the architecture of polymeric metal complexes because of its ability to form short bridges via one carboxylato group or long bridges via the benzene ring (Ma et al., 2003; Zhang et al., 2003; Yuan et al., 2003). Recently, we tried to prepare a polymeric $\mathrm{Co}^{\mathrm{II}}$ complex bridged by the tpt group, but X-ray diffraction analysis revealed an unexpected structure consisting of an uncoordinated tpt anion and a complex $\mathrm{Co}^{\text {II }}$ cation, viz. diaquatetrakis(imidazole)cobalt(II) terephthalate, (I).

As shown in Fig. 1, the crystal structure contains a complex $\mathrm{Co}^{\mathrm{II}}$ cation and a terephthalate anion, which exhibits an isostructural structure to those of the reported complexes $\left[M\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)(M=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Mn})(\mathrm{Niu}$ et al., 1999; Zeng et al., 1997; Liu et al., 2001). The Co atom, located on an inversion centre, exhibits octahedral coordination geometry. Four imidazole and two water molecules coordinate to the Co atom with normal bond distances and angles. The terephthalate anion does not coordinate to the Co atom but links the complex cations through an extensive hydrogenbonding network (Fig. 2).

Experimental

To a solution of imidazole (4.7 mmol), terephthalic acid (1.9 mmol) and water $(20 \mathrm{ml})$ was added $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{mmol})$. After stirring for 20 min , the mixture was allowed to stand at room temperature undisturbed for about 6 d , resulting in purple crystals.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$
$M_{r}=531.40$
Monoclinic, $C 2 / c$
$a=22.2830(7) \AA$
$b=7.6818$ (3) \AA
$c=16.1127$ (3) \AA
$\beta=120.630(2)^{\circ}$
$V=2373.25(12) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.736, T_{\text {max }}=0.950$
3377 measured reflections
$D_{x}=1.487 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 82
reflections
$\theta=2.1-25.1^{\circ}$
$\mu=0.78 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, purple
$0.32 \times 0.21 \times 0.06 \mathrm{~mm}$

2071 independent reflections
1731 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-12 \rightarrow 25$
$k=-8 \rightarrow 9$
$l=-19 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.133$
$S=1.08$
2071 reflections
209 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0643 P)^{2}\right. \\
& +7.3403 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=0.40 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0019 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 3$	$2.144(3)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.149(3)$
$\mathrm{Co} 1-\mathrm{N} 3$	$2.146(3)$		
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 3$	$88.11(11)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$	$88.59(11)$

Table 2
Hydrogen-bonding geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.86(5)$	$1.91(5)$	$2.765(4)$	$175(5)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.79(5)$	$1.97(5)$	$2.743(4)$	$165(5)$
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.88(5)$	$1.82(5)$	$2.699(3)$	$174(4)$
$\mathrm{O}_{3}-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{iv}}$	$0.80(5)$	$2.05(5)$	$2.813(4)$	$159(5)$

Symmetry codes: (ii) $1-x, y, \frac{1}{2}-z$; (iii) $x,-y, z-\frac{1}{2}$; (iv) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXS97.

References

Liu, Y., Xu, D. J. \& Liu, J. G. (2001). J. Coord. Chem. 54, 175-781.

Figure 1
A perspective view of the complete centrosymmetric molecule of (I). Displacement ellipsoids are drawn at the 30% probability level [symmetry codes: $\left.(A) \frac{1}{2}-x, \frac{1}{2}-y,-z ;(B) 1-x, y, \frac{3}{2}-z\right]$.

Figure 2
The three-dimensional structure of (I), viewed along the b axis. Hydrogen bonding is indicated by dashed lines.

Ma, C. B., Chen, C. N., Liu, Q. T., Liao, D. Z., Li, L. C. \& Sun, L. C. (2003). New J. Chem. 27, 890-894.

Niu, S. Y., Yang, Z. Z., Yang, Q. C., Hou, Y. Y., Yang, G. D. \& Bu, W. M. (1999). Chem. J. Chin. Univ. 20, 1671-1676.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yuan, M., Wang, E. B., Lu, Y., Wang, S. T., Li, Y. G., Wang, L. \& Hu, C. W. (2003). Inorg. Chim. Acta, 344, 257-261.

Zeng, H. Q., Yang, M., Huang, X. Y. \& Chen, X. Y. (1997). Cryst. Res. Technol. 32, 467-471.
Zhang, X. M., Tong, M. L., Gong, M. L. \& Chen, X. M. (2003). Eur. J. Inorg. Chem. 1, 138-142.

